
Support Vector Machines (SVM)

Linear separation of a feature space

A hyper plane in an n-D feature space can be represented by the following
equation:

f(x) = xTw + b =
n∑
i=1

xiwi + b = 0

Dividing by ||w||, we get

xTw

||w||
= Pw(x) = − b

||w||

indicating that the projection of any point x on the plane onto the vector w
is always −b/||w||, i.e., w is the normal direction of the plane, and |b|/||w||
is the distance from the origin to the plane. Note that the equation of the
hyper plane is not unique. c f(x) = 0 represents the same plane for any c.

The n-D space is partitioned into two regions by the plane. Specifically,
we define a mapping function y = sign(f(x)) ∈ {1,−1},

f(x) = xTw + b =

{
> 0, y = sign(f(x)) = 1, x ∈ P
< 0, y = sign(f(x)) = −1, x ∈ N

Any point x ∈ P on the positive side of the plane is mapped to 1, while any
point x ∈ N on the negative side is mapped to -1. A point x of unknown
class will be classified to P if f(x) > 0, or N if f(x) < 0.

Example:
A straight line in 2D space x = [x1, x2]

T described by the following equa-
tion:

f(x) = xTw + b = [x1, x2]

[
w1

w2

]
+ b = [x1, x2]

[
1
2

]
− 1 = x1 + 2x2 − 1 = 0

devides the 2D plane into two halves. The distance between the origin and
the line is

|b|
||w||

=
1√

w2
1 + w2

2

=
1√
5

= 0.447

Consider three points:

1



• x0 = [0.5, 0.25]T , f(x0) = 0.5 + 2 × 0.25 − 1 = 0, i.e., x0 is on the
plane;

• x1 = [1, 0.25]T , f(x1) = 1 + 2 × 0.25 − 1 = 0.5 > 0, i.e., x1 is above
the straight line;

• x2 = [0.5, 0]T , f(x2) = 0.5 + 2× 0− 1 = −0.5 < 0, i.e., x2 is below the
straight line.

The learning problem

Given a set K training samples from two linearly separable classes P and N:

{(xk, yk), k = 1, · · · , K}

where yk ∈ {1,−1} labels xk to belong to either of the two classes. we want
to find a hyper-plane in terms of w and b, that linearly separates the two
classes.

Before the classifier is properly trained, the actual output y′ = sign(f(x))
may not be the same as the desired output y. There are four possible cases:

Input (x, y) Output y′ = sign(f(x)) result

1 (x, y = 1) y′ = 1 = y corrrect
2 (x, y = −1) y′ = 1 6= y incorrect
3 (x, y = 1) y′ = −1 6= y incorrect
4 (x, y = −1) y′ = −1 = y corrrect

The weight vector w is updated whenever the result is incorrect (mistake
driven):

• If (x, y = −1) but y′ = 1 6= y (case 2 above), then

xnew = wold + ηyx = wold − ηx

When the same x is presented again, we have

f(x) = xTwnew + b = xTwold − ηxTx + b < xTwold + b

The output y′ = sign(f(x)) is more likely to be y = −1 as desired.
Here 0 < η < 1 is the learning rate.
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• If (x, y = 1) but y′ = −1 6= y (case 3 above), then

wnew = wold + ηyx = wold + ηx

When the same x is presented again, we have

f(x) = xTwnew + b = xTwold + ηxTx + b > xTwold + b

The output y′ = sign(f(x)) is more likely to be y = 1 as desired.

Summarizing the two cases:

if yf(x) = y(xTwold + b) < 0, then wnew = wold + ηyx

The two correct cases (cases 1 and 4) can also be summarized as

yf(x) = y(xTw + b) ≥ 0

which is the condition a successful classifier should satisfy.
We assume initially w = 0, and the K training samples are presented

repeatedly, the training will yield:

w =
K∑
i=1

αiyixi

where αi > 0. Note that w is expressed as a linear combination of the
training samples. After receiving a new sample (xi, yi), vector w is updated
by

if yif(xi) = yi(x
T
i wold + b) = yi

 m∑
j=1

αjyj(x
T
i xj) + b

 < 0,

then wnew = wold + ηyixi =
m∑
j=1

αjyjxj + ηyixi, i.e. αnewi = αoldi + η

Now both the decision function

f(x) = xTw + b =
m∑
j=1

αjyj(x
Txj) + b

and the learning law

if yi

 m∑
j=1

αjyj(x
T
i xj) + b

 < 0, then αnewi = αoldi + η

are expressed in terms of the inner production of input vectors.
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SVM Dereivations

For a decision hyper-plane xTw + b = 0 to separate the two classes P =
{(xi, 1)} and N = {(xi,−1)}, it has to satisfy

yi(x
T
i w + b) ≥ 0

for both xi ∈ P and xi ∈ N . Among all such planes satisfying this condition,
we want to find the optimal one H0 that separates the two classes with the
maximal margin (the distance between the decision plane and the closest
sample points).

The optimal plane should be in the middle of the two classes, so that
the distance from the plane to the closest point on either side is the same.
We define two additional planes H+ and H− that are parallel to H0 and go
through the point closest to the plane on either side:

xTw + b = 1, and xTw + b = −1

All points xi ∈ P on the positive side should satisfy

xTi w + b ≥ 1, yi = 1

and all points xi ∈ N on the negative side should satisfy

xTi w + b ≤ −1, yi = −1

These can be combined into one inequality:

yi(x
T
i w + b) ≥ 1, (i = 1, · · · ,m)

The equality holds for those points on the planes H+ or H−. Such points are
called support vectors, for which

xTi w + b = yi

i.e., the following holds for all support vectors:

b = yi − xTi w = yi −
m∑
j=1

αjyj(x
T
i xj)
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Moreover, the distances from the origin to the three parallel planes H−,
H0 and H+ are, respectively, |b−1|/||w||, |b|/||w||, and |b+ 1|/||w||, and the
distance between planes H− and H+ is 2/||w||.

Our goal is to maximize this distance, or, equivalantly, to minimize the
norm ||w||. Now the problem of finding the optimal decision plane in terms
of w and b can be formulated as:

minimize
1

2
wTw =

1

2
||w||2 (objective function)

subject to yi(x
T
i w + b) ≥ 1, or 1− yi(xTi w + b) ≤ 0, (i = 1, · · · ,m)

Since the objective function is quadratic, this constrained optimization prob-
lem is called a quadratic program (QP) problem. (If the objective function
is linear instead, the problem is a linear program (LP) problem). This QP
problem can be solved by Lagrange multipliers method to minimize the fol-
lowing

Lp(w, b, α) =
1

2
||w||2 +

m∑
i=1

αi(1− yi(xTi w + b))

with respect to w, b and the Lagrange coefficients αi ≥ 0 (i = 1, · · · , αm).
We let

∂

∂W
Lp(w, b) = 0,

∂

∂b
Lp(w, b) = 0

These lead, respectively, to

w =
m∑
j=1

αjyjxj, and
m∑
i=1

αiyi = 0

Substituting these two equations back into the expression of L(w, b), we get
the dual problem (with respect to αi) of the above primal problem:

maximize Ld(α) =
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
T
i ,xj

subject to αi ≥ 0,
m∑
i=1

αiyi = 0

The dual problem is related to the primal problem by:

Ld(α) = inf(w,b)Lp(w, b, α)
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i.e., Ld is the greatest lower bound (infimum) of Lp for all w and b.
Solving this dual problem (an easier problem than the primal one), we

get αi, from which w of the optimal plane can be found.
Those points xi on either of the two planes H+ and H− (for which the

equality yi(w
Txi + b) = 1 holds) are called support vectors and they corre-

spond to positive Lagrange multipliers αi > 0. The training depends only on
the support vectors, while all other samples away from the planes H+ and
H− are not important.

For a support vector xi (on the H− or H+ plane), the constraining con-
dition is

yi
(
xTi w + b

)
= 1 (i ∈ sv)

here sv is a set of all indices of support vectors xi (corresponding to αi > 0).
Substituting

w =
m∑
j=1

αjyjxj =
∑
j∈sv

αjyjxj

we get
yi(
∑
j∈sv

αjyjx
T
i xj + b) = 1

Note that the summation only contains terms corresponding to those support
vectors xj with αj > 0, i.e.

yi
∑
j∈sv

αjyjx
T
i xj = 1− yib

For the optimal weight vector w and optimal b, we have:

||w||2 = wTw =
∑
i∈sv

αiyix
T
i

∑
j∈sv

αjyjxj =
∑
i∈sv

αiyi
∑
j∈sv

αjyjx
T
i xj

=
∑
i∈sv

αi(1− yib) =
∑
i∈sv

αi − b
∑
i∈sv

αiyi

=
∑
i∈sv

αi

The last equality is due to
∑m
i=1 αiyi = 0 shown above. Recall that the

distance between the two margin planes H+ and H− is 2/||w||, and the
margin, the distance between H+ (or H−) and the optimal decision plane
H0, is

1

||w||
=

(∑
i∈sv

αi

)−1/2
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Soft Margin SVM

When the two classes are not linearly separable (e.g., due to noise), the
condition for the optimal hyper-plane can be relaxed by including an extra
term:

yi(x
T
i w + b) ≥ 1− ξi, (i = 1, · · · ,m)

For minimum error, ξi ≥ 0 should be minimized as well as ||w||, and the
objective function becomes:

minimize wTw + C
m∑
i=1

ξki

subject to yi(x
T
i w + b) ≥ 1− ξi, and ξi ≥ 0; (i = 1, · · · ,m)

Here C is a regularization parameter that controls the trade-off between
maximizing the margin and minimizing the training error. Small C tends to
emphasize the margin while ignoring the outliers in the training data, while
large C may tend to overfit the training data.

When k = 2, it is called 2-norm soft margin problem:

minimize wTw + C
m∑
i=1

ξ2i

subject to yi(x
T
i w + b) ≥ 1− ξi, (i = 1, · · · ,m)

(1)

Note that the condition ξi ≥ 0 is dropped, as if ξi < 0, we can set it to zero
and the objective function is further reduced.) Alternatively, if we let k = 1,
the problem can be formulated as

minimize wTw + C
m∑
i=1

ξi

subject to yi(x
T
i w + b) ≥ 1− ξi and ξi ≥ 0; (i = 1, · · · ,m)

(2)

This is called 1-norm soft margin problem. The algorithm based on 1-norm
setup, when compared to 2-norm algorithm, is less sensitive to outliers in
training data. When the data is noisy, 1-norm method should be used to
ignore the outliers.
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L2-Norm Soft Margin

The primal Lagrangian for 2-norm problem above is

Lp(w, b, ξ, α) =
1

2
wTw +

C

2

m∑
i=1

ξ2i −
m∑
i=1

αi[yi(w
Tx + b)− 1 + ξi]

Substituting

∂L

∂w
= w −

m∑
i=1

yiαixi = 0;
∂L

∂ξ
= Cξ − α = 0;

∂L

∂b
=

m∑
i=1

yiαi = 0

into the primal Lagrangian, we get the dual problem

maximize Ld(α) =
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

yiyjαiαjx
T
j xi −

1

2C

m∑
i=1

α2
i

=
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

yiyjαiαj(x
T
j xi +

1

C
δij)

subject to αi ≥ 0,
m∑
i=1

αiyi = 0

This QP program can be solved for αi. All support vectors xi corresponding
to αi > 0 satisfy:

yi(x
T
i w + b) = 1− ξi

Substituting w =
∑
j∈sv yjαjxj into this equation, we get

yi(
∑
j∈sv

yjαj(x
T
i xj) + b) = 1− ξi, i.e., yi

∑
j∈sv

yjαj(x
T
i xj) = 1− ξi − yib

For the optimal weight w, we have

||w||2 = wTw =
∑
i∈sv

αiyix
T
i

∑
j∈sv

αjyjxj =
∑
i∈sv

αiyi
∑
j∈sv

αjyjx
T
i xj

=
∑
i∈sv

αi(1− ξi − yib) =
∑
i∈sv

αi −
∑
i∈sv

αiξi − b
∑
i∈sv

yiαi

=
∑
i∈sv

αi −
∑
i∈sv

αiξi =
∑
i∈sv

αi −
1

C

∑
i∈sv

α2
i

The last equation is due to ξi = αi/C. The optimal margin is

1/||w|| = (
∑
i∈sv

αi −
1

C

∑
i∈sv

α2
i )
−1/2

8



L1-Norm Soft Margin

The primal Lagrangian for 1-norm problem above is

Lp(w, b, ξ, α, γ) =
1

2
wTw + C

m∑
i=1

ξi −
m∑
i=1

αi[yi(w
Tx + b)− 1 + ξi]−

m∑
i=1

γiξi

with αi ≥ 0 and γi ≥ 0. Substituting

∂L

∂w
= w −

m∑
i=1

yiαixi = 0;
∂L

∂ξ
= C − αi − γi = 0;

∂L

∂b
=

m∑
i=1

yiαi = 0

into the primal Lagrangian, we get the dual problem

maximize Ld(α, γ) =
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

yiyjαiαjx
T
j xi −

m∑
i=1

αiξi −
m∑
i=1

γiξi + C
m∑
i=1

ξi

=
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

yiyjαiαjx
T
j xi

subject to 0 ≤ αi ≤ C,
m∑
i=1

αiyi = 0

Note that interestingly the objective function of the dual problem is identical
to that of the linearly separable problem discussed previously, due to the nice
cancellation based on C = αi + γi. Also, since αi ≥ 0 and γi ≥ 0, we have
0 ≤ αi ≤ C. Solving this QP problem for αi, we get the optimal decision
plane w and b with the margin

(
∑
i∈sv

∑
j∈sv

αiαjyiyjx
T
i xj)

−1/2

Kernel Mapping

The algorithm above converges only for linearly separable data. If the data
set is not linearly separable, we can map the samples x into a feature space
of higher dimensions:

x −→ φ(x)

in which the classes can be linearly separated. The decision function in the
new space becomes:

f(x) = φ(x)Tw + b =
m∑
j=1

αjyj(φ(x)Tφ(xj)) + b
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where

w =
m∑
j=1

αjyjφ(xj)

and b are the parameters of the decision plane in the new space. As the
vectors xi appear only in inner products in both the decision function and
the mapping function φ(x) does not need to be explicitly specified. Instead,
all we need is the inner product of the vectors in the new space. The function
φ(x) is a kernel-induced implicit mapping.

Definition: A kernel is a function that takes two vectors xi and xj as
arguments and returns the value of the inner product of their images φ(xi)
and φ(xj):

K(x1,x2) = φ(x1)
Tφ(x2)

As only the inner product of the two vectors in the new space is returned,
the dimensionality of the new space is not important.

The learning algorithm in the kernel space can be obtained by replacing
all inner products in the learning algorithm in the original space with the
kernels:

f(x) = φ(x)Tw + b =
m∑
j=1

αjyjK(x,xj) + b

The parameter b can be found from any support vectors xi:

b = yi − φ(xi)
Tw = yi −

m∑
j=1

αjyj(φ(xi)
Tφ(xj)) = yi −

m∑
j=1

αjyjK(xi,xj)

Example 0: linear kernel
Assume x = [x1, · · · , xn]T , z = [z1, · · · , zn]T ,

K(x, z) = xTz =
n∑
i=1

x1z1

Example 1: polynomial kernels
Assume x = [x1, x2]

T , z = [z1, z2]
T ,

K(x, z) = (xTz)2 = (x1z1 + x2z2)
2 = x21z

2
1 + x22z

2
2 + 2x1z1x2z2

= < (x21, x
2
2,
√

2x1x2), (z
2
1 , z

2
2 ,
√

2z1z2) >= φ(x)Tφ(z)

This is a mapping from a 2-D space to a 3-D space. The order can be changed
from 2 to general d.
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Example 2:
K(x, z) = e−||x−z||

2/2σ2

Example 3:

K(x, z) = K(x, z)K(x,x)−1/2K(z, z)−1/2
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