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Abstract

A succinct description of the authors’ methods, a simulation study with repli-
cation of two independent experiments and implications of the study is provided.
Fundamental derivations for both prior and posterior distributions used in the au-
thors’ Bayesian approach for estimation is included. Finally, a review of the of the
Dirichlet process is included in order to provide context for this distribution’s utility.
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1 Motivation for Introducing Joint Clustering

Cluster analysis is a technique used to classify a set of objects into relative groups called

clusters. The goal is to form clusters in such a way that objects within the same cluster

are similar to one another but are dissimilar to those in other clusters. To study patterns

of wheal sizes in reaction to different allergens at different ages, authors of this paper were

interested in forming clusters such that subjects within the same cluster were dissimilar

to those in other clusters in the following ways: (1) their reaction to certain allergens was

different from their reaction to other allergens and (2) their reaction to certain allergens was

different from the reaction of other subjects in other groups to the same allergens. Classical

methods for cluster analysis, however, generally only satisfy one of the two conditions; they

focus on clustering subjects or variables (e.g. allergens) but not both. Focusing on one

criterion can cause lack of homogeneity in the other, and though methods, such as bi-

clustering, exist that can address both the interdependence between phenotypes and the

homogeneity in subjects, they fail to explain how certain external variables, such as time,

affect the formation of patterns. The ability to explain such external variable effects is

crucial in this study, which explores changes in allergic sensitization with age.

In order to form clusters that satisfy the two stated conditions and explain the time

effect, a novel method, called joint clustering, is proposed by the authors. This probabilistic

clustering method considers both the correlation between variables and the interrelationship

between variables and subjects by introducing an indicator variable for variable cluster

assignment and applying a Dirichlet process mixture model to cluster the subjects. It also

takes into account the relationship between the variables and the covariates by evaluating

their associations using a semi-parametric model via penalized splines. Details of the joint

clustering method are further explained below.
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2 Setting and Methods Overview

2.1 Clustering of Subjects and Clustering of Variable Clusters

First, we briefly review the setting that the authors use for the procedure to clustering the

variables. M clusters and K variables are considered for the clustering procedure. The

authors use a a vector function to model the relationship between variables and covariates

of interest. More specifically they use penalized splines as described in Eilers and Marx

(1).

P-splines possess properties that are particularly efficacious for modeling relationships.

This is primarily due to the inherited properties from B-spline basis functions. For brevity,

we outline two:

1. Boundary effects P-splines show no boundary effects. In other words, the spread-

ing of a fitted curve or density outside of the (physical) domain of the data,

generally accompanied by bending toward zero (2).

2. P-splines fit polynomial data exactly. Given data (xi, yi), if the yi are a poly-

nomial in x of degree k, then B-splines of degree k or higher will fit the data

exactly. In practical applications, this is problematic as this leads to over-fitting.

The subjects within each variable cluster are further grouped such that each group

reflects a different relationship between variables and covariates of interest.

The authors propose an indicator matrix in order to determine the subject clusters

within each variable cluster - primarily through grid search. To do so, the authors propose

the Dirichlet process parameterized by a base distribution that describes the base associa-

tion between the response variable and the cluster variable m and subject i.
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2.2 Constructing Mixture Models from the Dirichlet Process

In the Appendix Section an overview of the Dirichlet process (DP) and Gaussian Mixture is

provided that describes the joint clustering approach by combining sections 2.1 and 2.2. For

the purpose of this report, the most salient methods are elaborated on in order to provide

greater detail on the DP as an invaluable tool for modeling hierarchical relationships.

Furthermore, a very brief review of the computational procedure is elaborated on (2.4) in

order to describe the sampling procedure of the conditional posterior distributions. Please

note that the notation described in each of the four proceeding sections in the Appendix

will not necessarily mirror the representative paper’s notation. Rather, the purpose of the

following sub-sections is to provide an overview for the the reader who is not familiar with

the Dirichlet process (3).

3 Simulation Study

To demonstrate the proposed method, the authors perform a simulation study and evaluate

the effectiveness of the method using sensitivity and specificity. One hundred Monte Carlo

(MC) replicates are generated, each with 10 variables and 400 subjects. The 10 variables

are first grouped into M clusters, and within each variable cluster, the subjects are further

clustered. The number of variable clusters is determined by optimizing the deviance in-

formation criterion (DIC). After running the clustering process for a set of different values

of M, the one with the smallest DIC is chosen. In the paper, 73 of the 100 MC replicates

were optimized at M = 3. Similar results were found when the process was replicated in

R. This is displayed in the figure below.
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The final number of joint clusters is decided by identifying an iteration with the least-

square-distance. After the MCMC burn-in, MCMC simulation is performed for additional

iterations, during which an n ×n ×K matrix composed of indicators of clustering for each

iteration is formed. The indicator denotes whether the subject i and j for the kth variable

are in one cluster. Then, the final number of joint clusters is selected by comparing the Eu-

clidean distance calculated for each iteration between the matrix formed and the averaged

clustering matrix.

4 Major Findings

The quality of clustering formed by the simulation study is assessed using sensitivity and

specificity based on pairwise agreements with respect to the true clustering. The authors

define sensitivity as SE=TP/(TP+FN) and specificity as SP=TN/(TN+FP), where “TP”
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denotes true positives, or correct cluster identification, “FN” denotes false negative, “TN”

true negatives, and “FP” false positives. Sensitivity and specificity calculations of the

simulation study were replicated in R, and the observed values are listed in Table 1. Similar

to the results found in the paper, high sensitivities and specificities are observed for all 6

clusters. The proposed method of joint clustering correctly identifies the true clusters of

the variables and the subjects.

Table 1: Means and standard deviations (SD) of each cluster under scenario 1

Sensitivity Specificity

Cluster Mean SD Mean SD

1 1.0000000 0.00000000 0.9972727 0.02727273

2 1.0000000 0.00000000 0.9986154 0.01384615

3 0.9900000 0.10000000 1.0000000 0.00000000

4 0.9900000 0.10000000 1.0000000 0.00000000

5 0.9900000 0.10000000 1.0000000 0.00000000

6 0.9999545 0.00045455 0.9989888 0.01011236

The results presented in Table 1 demonstrate the robustness of the joint clustering

method with respect to different cluster patterns. These results are based on a specific

choice of the values of the variance components in the covariance matrices for the three

variable clusters. The choice was made to control the impact of large variation in the

data on the quality of clustering. In a different scenario, the authors tested such impact by

increasing the values of the variance components for the variable clusters from 1, 1, 0.6 to 5,

6, 6, respectively. Keeping the other settings the same, the second scenario was replicated

in R, and the results are presented in Table 2. Compared to the first scenario, the means of
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the sensitivities and the specificities from the second scenario are not heavily impacted by

the larger variations in the data. However, the standard deviations are generally larger in

the second scenario than the first. This implies an increased uncertainty that is potentially

due to the larger variations in the data.

Table 2: Means and standard deviations (SD) of each cluster under scenario 2

Sensitivity Specificity

Cluster Mean SD Mean SD

1 0.9700000 0.17144661 0.9972727 0.02727273

2 0.9940000 0.03610062 0.9765385 0.08863434

3 0.9900000 0.10000000 1.0000000 0.00000000

4 0.9900000 0.10000000 1.0000000 0.00000000

5 0.9400000 0.23868326 1.0000000 0.00000000

6 0.9911136 0.04215788 0.9883483 0.03183577

The authors also consider a third scenario in which they assess the sensitivity on the

independence assumption between the variable clusters. Due to the lack of information

on how the correlation between the variables are setup, this scenario was not replicated.

The results from the paper demonstrates the robustness of the joint clustering method

by showing high average sensitivities and specificities compared to those under the first

scenario. The authors conclude that the increased sensitivity and specificity for some

clusters are likely due to the increased homogeneity in the variables and state that the

increase is beneficial to the quality of clustering.

The goal of this study was to introduce a novel method for cluster analysis that can be

used to examine the patterns of wheal sizes in reaction to different allergens at different
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ages and how those patterns are associated with asthma risk. Using the data from a

longitudinal study cohort aiming to investigate the history of asthma (4), the authors

applied the joint clustering method in real life and were able to identify subsets of allergens

as well as patterns of wheal sizes over time that may play a key role in asthma occurrence.

According to the authors, the proposed method is ready to be applied to other types of

statistical models, such as logistic regressions or log-linear models, with multiple response

variables which have different associations with covariate(s) of interest.

5 Implications and Limitations

This paper opens a new a new frontier in methods that can jointly cluster variables and

subjects with effect from exogenous covariates. Moreover, the bi-clustering benchmarks’

conclusions suggest that this clustering approach may require additional methods for as-

sessing full separation of the clusters.

Finally, because the Dirichlet process plays an important role in the Bayesian non-

parametric framework as a prior distribution with wide support and tractable inference.

As such, many generalizations and extensions have been explored in the literature. A very

popular generalization is the Pitman-Yor process (5; 6). The Pitman-Yor process has an

additional parameter d ∈ [0, 1) and reduces to the Dirichlet process when d = 0. If d is

close to 1, the clusters generated by the Pitman-Yor process exhibit a power-law behavior

that produces few large clusters or many smaller clusters.

Other generalizations of the DP include Pólya trees, stick-breaking priors and Poisson-

Kingman models. These can be derived by extending one of the representations of the DP.

A different class of extensions uses the Dirichlet process as building blocks to develop more

complex models. Two such models are the dependent Dirichlet processes (7) and hierarchi-
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cal Dirichlet processes (8). It would be interesting to also see how using the aforementioned

procedures has any effect on separability of clusters across all three scenarios.

Beyond extending the DP as it applies to the posterior distribution, recent research has

also been focused on exploring more efficient inference methods in Dirichlet process models

that do not use the simple Gibbs sampler. Moreover, the complexity of these models and

the expense in implementing them poses a significant practical burden within industry and

academic research. In conclusion, Bayesian non-parametric methods provide a powerful set

of tools for clustering and demonstrate their utility across difference applied settings.
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Appendix A

Details of the Dirichlet-Multinomial

The Multinomial (or Categorical distribution) and the Dirichlet Process (DP) are used

to represent the probability of finding the kth variable in each of the clusters, M and ξ the

hyperprior is chosen, respectively. The DP is detailed in greater detail later in this article.

However, for the following generic clustering of variables consider the following set-up:

θ = (θ1, . . . , θm), Xi ∈ {1, . . . ,m},
∑
i

θi = 1.

Assume that:

X | θ ind∼ Multinomial(θ)

or

X | θ ind∼ Categorical(θ)P (Xi = j | θ) = θj

and

θ ∼ Dirichlet(α)(θ | α) ∝
m∏
j=1

θ
αj−1
j

∑
j

θj = 1, θi ≥ 0∀i ∈ 1...m
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Likelihood

Define the data as:

D = (x1, . . . , xn), xi ∈ {1, . . .m}

Using this set-up we have:

p(D | θ) =
n∏
i=1

P (Xi = xi | θ)

=
n∏
i=1

θxi

=
n∏
i=1

m∏
j=1

θ
I(xi=j)
j

=
m∏
j=1

θ
∑

i I(xi=j)
j

=
m∏
j=1

θ
cj
j

where c = (c1, . . . cm)cj = i : xi = j}.

Likelihood, Prior, and Posterior

Using the likelihood we can then derive the posterior:

p(D | θ) =
∏m

j=1 θ
cj
j

P (θ) ∝
∏m

j=1 θ
αj−1
j I(

∑
j θj = 1, θi ≥ 0∀i)
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Then we have:

P (θ | D) ∝
m∏
j=1

θ
cj
j ×

m∏
j=1

θ
αj−1
j I(

∑
j

θj = 1, θi ≥ 0∀i)

∝
m∏
j=1

θ
cj+αj−1
j I(

∑
j

θj = 1, θi ≥ 0∀i)

This implies that:

θ | D ∼ Dirichlet(c+ α).

1. The Dirichlet is conjugate to the Categorical or Multinomial.

2. Hence, a more simplified posterior can be written as follows:∏
i Multinomial(xi | θ)×Dir(θ | α) ∝ Dir(θ | c+ α).

In addition the covariance Σm is produced from the Inverse Wishart distribution with

scale parameters S and ν as follows:

Suppose Σ ∼ InvWishart(νo, S
−1
o ) where νo is a scalar and S−1o is a matrix.

p(Σ) ∝ det(Σ)−(νo+p+1)/2 × exp{−tr(SoΣ
−1)/2}

θ | XΣ ∼ Multivariate Normal(θ,Σ).
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Also note that p(Σ | X, θ) = p(Σ)× p(X | θ,Σ). Taking the previous definition we can

then construct the following:

p(X | θ,Σ)

∝ det(Σ)−n/2 exp{−
∑
i

(Xi − θ)TΣ−1(Xi − θ)/2}

∝ det(Σ)−n/2 exp{−tr(SθΣ
−1/2)}

Now we can calculate p(Σ | X, θ):

p(Σ | X, θ) (1)

= p(Σ)× p(X | θ,Σ) (2)

∝ det(Σ)−(νo+p+1)/2 × exp{−tr(SoΣ
−1)/2} (3)

× det(Σ)−n/2 exp{−tr(SθΣ
−1)/2} (4)

∝ det(Σ)−(νo+n+p+1)/2 exp{−tr((So + Sθ)Σ
−1)/2} (5)

This implies that Σ | X, θ ∼ InvWishart(νo + n, [So + Sθ]
−1 = Sn)

Suppose that we wish now to take θ | X,Σ ∼ Multivariate Normal(µn,Σn) Now let

Σ | X, θ ∼ InvWishart(νn, S
−1
n )

There is no closed form expression for this posterior. In lieu of producing an analytical

solution, we would need to construct an approximation of the posterior via Gibbs sampling

(9).
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For example, suppose the Gibbs sampler is at iteration m.

1. Sample θ(m+1) from it’s full conditional:

a) Compute µn and Σn from X and Σ(m+1)

b) Sample θ(m+1) ∼ Multivariate Normal(µn,Σn)

2. Sample Σ(m+1) from its full conditional:

a) Compute Sn from X and Σ(m+1)

b) Sample Σ(m+1) ∼ InvWishart(νn, S
−1
n )

This aforementioned Gibbs sampling procedure is further detailed in the authors’ ap-

pendix section.
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Appendix B

Additional Details on the DP and GP

For the reader who is not familiar with either the domain of mathematical statistics,

nor hierarchical models a natural question may be ask would be: Why even use the DP

model? What makes this model particularly useful and so ubiquitously cited in literature?

What is its practical significance within data mining techniques? In the following section,

an attempt to answer these aforementioned questions is detailed in order to provide the

basic setting illustrated in sections 2.1 - 2.3. The Dirichlet model has the form:

βi,m|G ∼ G,

G ∼ DP(λ,G0),

where G0 is the information provided by cluster variables and subject. Essentially, this

measure encapsulates any prior knowledge that might be known about G. Moreover, it

can be shown that E[G | G0, λ] = G0. The concentration parameter λ specifies the prior

variance and controls the relative contribution that the prior and data make to the posterior.

Part 1: The DP is a conjugate prior that is constructed as follows: if y1, . . . , yn ∼ G

and G ∼ DP(G0, λ0), then:

G | y1, . . . , yn ∼ DP
(
λ+ n,

λG0+
∑n

i=1 φyi
λ+n

)
, where φyi denotes a point-mass at yi. Hence,

the posterior distribution of G is a weighted sum of the base measure G0 and the empirical

distribution of the data, with the weighting controlled by λ.

The DP is a prior distribution over the space of probability distributions. As such,

samples from a DP are probability distributions. The stick-breaking representation first

introduced by (10) shows what such samples can be described as such.
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Part 2: Suppose that G ∼ DP(λ,H) is a random probability distribution sampled

from a DP prior. Then with probability 1, G can be written as:

G =
∞∑
k=1

wkφψk
, ψk ∼ G0

where

wk = zk

k−1∏
i=1

(1− zi), zi ∼ Beta(1, λ).

Practically, a random probability distribution can be sampled from a DP by first draw-

ing a collection of samples zi from a Beta distribution, transforming these to produce the

weights {wi}, and then drawing the associated point masses from G0. Note that in order

for G to represent DP, an infinite number of point masses must be drawn. Practically, the

the above summation can be truncated with a finite number (N) draws while still providing

a very good approximation to the Dirichlet process.

By combining 1 and 2, we can sample a DP from its posterior distribution G | y1, . . . , yn
as follows:

Part 3: If y1, . . . , yn ∼ G and G ∼ DP(λ,G0) then we can draw a (truncated) sample

probability distribution from the posterior G | y1, . . . , yn as follows:

G =
N∑
k=1

wkφφk , φk ∼
λG0 +

∑n
i=1 φyi

λ+ n
,

where

wk = zk

k−1∏
i=1

(1− zi), zi ∼ Beta(1, λ+ n).

and N is a truncation parameter.
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Appendix C

Constructing Mixture Models from the Dirichlet Process

The stick breaking representation cited earlier showed that probability distributions

sampled from a DP are discrete with probability 1. Thus, the DP is not an appropriate

prior for G when G is continuous. Therefore, we specify this heuristic as such:

yi ∼ k(yi | θi),

θi ∼ G,

G ∼ DP(G0, λ).

(6)

In other words, G has a DP prior as before, but rather than the data yi being drawn from

G, it is instead the mixture parameters θ which are draws from G. These θ values then act

as the parameters of a parametric kernel function k(·), which is usually continuous. The

most commonly used example is the Gaussian mixture model where θi = (µi, σ
2
i ) so that

k(yi | θi) = N(yi | µi, σ2
i ).

Since G is discrete, two independent draws θi and θj from G can have identical values

with a non-zero probability. As such, the mixture presentation step described earlier leads

to clusters, corresponding to the mixture components. The above model can hence be

written equivalently as the following mixture model, which is infinite dimensional can

hence be viewed as a generalization of the finite mixture models:

yi ∼ G,

G =

∫
k(yi | θ)G(θ)dθ,

G ∼ DP(θ, λ).
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Practically, it appears that the authors focused on several different parameters of the

posterior distribution. Generally, in some cases, the primary object of interest will be

all n of the θi parameters from Equation 6 which are associated with the n observations.

This is particularly the case in clustering applications, where the goal is to assign similar

observations to the same cluster (i.e. to identical values of θ). However in other situations

it will be the distribution G which is of primary interest.

The authors instead use a MCMC approach via the Gibbs algorithm based on the

representation in Equation 6 above, and draws samples of θ1, . . . , θn from their posterior

with the distribution G integrated out.

Part 4: Let θ−i denote the set of θ values with θi excluded, i.e. θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn).

Then the posterior distribution for θi conditional on the other model parameters is:

p(θi | θ−i, y1:n, λ,G0) =
∑
j 6=i

qi,jφ(θj) + riHi,

qi,j = bk(yi, θj), ri = bλ

∫
k(yi, θ)dG0(θ)

where b is set such that
∑

j 6=i qi,j + ri = 1 and Hi is the posterior distribution of θ based

off of the prior base measure G0.

Based on this result, Gibbs sampling is used to repeatedly draw each value of θi in

turn from its posterior distribution, with all other variables held constant. An important

distinction needs to be made between the conjugate case where the G0 base measure is

the conjugate prior for θ with respect to the kernel k(·), and the non-conjugate case there

is not a closed form for the posterior distribution. In the conjugate case, the integral in

part 4 can be computed analytically and the resulting distribution is simply the predictive

distribution. In this case, the θi values can be sampled directly from their true posterior

distribution.
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In the non-conjugate case the integral in part 4 (above) cannot be evaluated. As such,

numerical techniques must be used instead. In practice, this is often slower.

p(θi | yj) =
∏
j=i

k(yj | θ)G0, (7)

for a conjugate base measure, this posterior distribution is tractable and thus can be sam-

pled directly. For a non-conjugate G0, a posterior sample is achieved using the Metropolis-

Hastings algorithm (11).

For density estimation and non-hierarchical predictive tasks, possessing a posterior sam-

ple of θ1:n will be sufficient for inference. However when the DP is used as part of a hierar-

chical model such as in the setting of a regression problem and/or point process setting it

is necessary to have samples from the posterior distribution of G. These can be obtained

using the following property:

Given the model from Equation (6) let θ1, . . . , θn be a sample from the posterior

p(θ1:n | y1:n, λ,G0) drawn. Then, p(G | θ1:n, y1:n, λ,G0) = p(G | θ1:n, λ,G0) is conditionally

independent of y1:n. As such, θ1:n can be considered as an i.i.d sample from G, and so G can

be sampled from its posterior distribution using the construction in part 3. As previously

discussed:

G =
N∑
i=1

wiφθi, wi ∼ Beta(λ+ n, 1), φi ∼ G0 +
n∑
i=1

φyi

where N is a truncation parameter.
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Background on Gaussian Mixture Models

The Gaussian distribution is the most commonly used mixture model. In this case, θ =

(µ, σ2) for the mean and variance. The kernel function can be defined as:

k(yi | θ) = N(yi | µ, σ2) =
1√

2πσ2
exp

(
−(y − µ)2

2σ2

)
.

The conjugate prior for θ is the Normal-Gamma distribution, with parameters γ = (µ0, k0, λ0, β0)

G0(θ | γ) = N

(
µ | µ0,

σ2

k0

)
Inv-Gamma

(
σ2 | λ0, β0

)
.

the default setting of the parameters is µ0 = 0, σ2
0 = 1, λ0 = 1, β0 = 1. Re-scaling the data

y such that its mean is 0 and standard deviation is 1. leads to the parameterization of G0

as an uninformative prior.

Since this prior is conjugate, the predictive distribution for a new observation ŷ can be

found analytically, and is a location/scale Student-t distribution:

p(ỹ | γ) =

∫
k(ŷ | θ)p(θ | G0)dθ =

1

σ̃
Student-t

(
ỹ − µ̃
σ̃
| ṽ
)
,

where ṽ = 2λ0, µ̃ = µ0, σ̃ =
√

β0(k0+1)
λ0k0

.

Finally the posterior distribution is also a Normal Inverse Gamma distribution due to

the conjugate nature of the prior

p(θ | y, γ) = N(µ | µn,
σ2

k0 + n
)Inv-Gamma(σ2 | λn, βn),

µn =
κ0µ0 + ny

k0 + n
,

λn = λ0 +
n

2
,

βn = β0 +
1

2

n∑
i=1

(yi − y)2 +
κ0n(y − µ0)

2

2(κ0 + n)
.
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